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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.
TECHNICAL NOTE NO. 190.

COMPARING THE PERFORMANCE OF GEOMETRICALLY
SIMILAR AIRPLANES.
By Max M. Munk.

This note has been prepared for the National Advisory o
Committee for Aeronautics. It deals with the model ruleg relat-
ing to aeronantical vproblems, and shows how the characteristics
of one airplane can be determined from those of another airplane
of different weight or size, and of similar type.

If certain rules for the ratios of the dimensions, the
weights and the horsepower are followed, a small low-powered
airplane can be used for obtaining information as to performance,

stability, controllability and maneuverability of a larger pro- __

totype, and contrariwise.

I. It has become éommon practice to use small airplane
models in wind tunnels or in equivalent test arrangements in or-
der to determine the air forces and pressures on an actual air-
plane iq steady flight. The conversion of the model forces %o -
the forces on full size airplanes is performed in accordance with _
sovecial model rules. There are different kinds of such model

rules. The model rule best known is the so-called "square law"

rule. The model scale and the airsveed may be chosen arbitrarily,
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them
and the actual forces are computed by supposing/to be pIOPOTtio?ﬁ}_

to the square of the (linear)} scale, %o the square of the velocity,
and to the dénsity of the fluid. This rule ig correct only if

the viscosity and compressibility of the air, the 1limited dimen-~
sions of the tunnel and some other minor factors do not influence
the result. Otherwise, the model rule has to be rodified, in

order to take into account one or the other of these factors.
Several of such special model rules have become known. As a mat-

ter of completeness and also as an introduction to the proper

subject of this note they will be briefly repeated. This note

deals chiefly with the deductions to be drawn from the experi- L
ence gained with an airplane in actual flight for the prediction y
of the properties of a second airplane of different size or weight,l
but geometrically similar. Thisg similarity refers in the first

place to the geometrical dimensions of the two airplanes and
should also include the shape and particularly the diameter of-
the propeller. For the study of most questions the two centers
of gravity have also to be situated at corresponding points. o
Some questions require that the length of the radii of inertia
and other dimensions, characteristic for the distribution of
masses, be included in the similarity.

Such discussion is thought to e particularly desirable at
present, since designers of high-powered airplanes give atten-
tion to experiences with gliders and low-powered airplanes, and

on the other hand, designers of low-powered alrplanes make use

L
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of experiences gained with high-powered airplanes.

The most convenient way to arrive at any model rule is 1o
congider the physicsl dimensions of the quantities in question.
We know, for instance, that the factors which chiefly govern any
forces of a given airplane flying at a given angle of attack or
other quantities derived therefrom, are the density of the air
P, the size of the airplane, characterized by the magnitude
b of any characteristic length, (for instance, the-span) and
the total weight W of the airplane. It will be more conven-
ient to choose as the third factor the load per unit area of the
wings, denoted by W/S. The length b, of course, has the di-
mension of a length and can be measured in feet. The density P
can be measured in 1b.-sec.2-ft.”%*. The unit load W/S can be
measured in 1b.ft.”- . Other factors which to a smaller degree
influence the air forces will be taken up in detail.

The question arises whether any of such factors, denoted by
a, b, ¢, can be dismigsed or disregarded without loss of gener-
ality in the information to be gained. Otherwise expressed, the
question arises, whether any desired quantity X has *to be
measured for all possible oombinations of the factois a, b, ¢,
governing its size, or whether there are certain rules existing
which permit a reduction in the number of factors to be combined
in a complete series of tests. This reduction may even be of
such an extent that only one test is required, in order that the

full information be obfained from this one test by computation.
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X ocan therefore be obtained from a reduced number ol tests for
all possible combinations of the factors. The great practical _ _
importance of this question is at once evident. |

Ite ansver depends upon whether or aot there is an essential
dif ference retween two different sets cf factors, referfihg, ior
instance, tc model and full-size airplans. The difference noted
is not essential if it can be compensated for by the choice of
different scales, or if it can only be found by a direct compar- _
ison of correspording factors. A new test is only required if
another law of neture becomes manifest, and how can this depend
upon the sceles used for the measurement? Imagine that no scales
of an¥ kind are available, and that two models are situated far
from each other, so that no direct comparison of two correspond-
ing factors can be made. The different conditions and factors
governing the result are known in each case. It can at once be
concluded that the results are equal if the comparison of the
different factors of each case with one another (but not the com-
parison of two factors belonginrg to the two different cases) can
establish no difference in the conditions. Now, such differences,
if any, could be expressed in pure ratioe only, in numbers giving
the ratio of two things of equal kind, these ratios to be derived
from the factors only and not by means of measuring the factors
by comparing them with scales not essential tc the thing itself
and arbitrarily brought in.

The answer o the question depends thus on the number of
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independent combinations of the factors a, b, ¢, existing, of
the form a® bP GW; which are pure numbers, o, B, ¥, ete.
being any exponents. If such combinations exist, the two sets
of factors can be distinguished from each other, even without
direct comparison, by the value of such nurbers. The model rule
is then, that such numberes or ratios, if any, will have to be
equal in the two cases to be compared, model with airplane for
instance, or with two airplanes. If all absolute ratios, de-
rived only from the conditions of the test, agree, the resilts
will also agree, but not absolutely, indeed, only when expressed
in units derived in an equal way from the corresponding factors

governing the magnitude of the quantity desired. Hence any

quantity derived from the test is equal to a certain "eoeffici- -

ent" multiplied by any expression of the form a% ©bF oY,

vhich does not necessarily contain all factors (some exponents

might become zero) and whose physical dimension is equal to the

physical dimension of the quantity. If the factors a, b, c,
are in both cases chosen in a corresponding way, the coefficients
will agree for equal numbers derived from the factors, or, other-
wise expressed, they will be mathematical functions of these
numbers only.

The discussion so far has been rather abstract, but it will
become much more tangible when discussed for specific cases in

the next paragraphs.
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IT. I proceed %o the discussion of several model rules re-
ferring to aeronautical problems. In the simplest and most com-
mon case there are only three factors which determine all quanti-
ties: they are the density of air p, the size of the ai rplane,
expressed by a characteristic length b? and the unit load W/S.
The shape of the airvlane, including the propelier dimensions,
the angle of attack, and the control settings, are supposed to be

invariable. The dimensions of +the three factors are: —

Length b unit load W/S density P

=2

Ft. 1b.f%." 1b.gec.B£5. 7"

The first coﬁtains feet only, the second feet and pounds, and
the third pounds, feet and seconds. That makes these three fac-
tors particularly convenient for the following application.

We first inquire whether there.exists any combination
@5)PeY  with at least one finite exponent, which has the dimen-
sion zero. There does not. This is at once obvious t0 a trained _
mathematician and the reader will try in vain %o form such com-
bination. Hence, after what has been said in the first chapter,
one single test for a particular angle of attack and setting of
all controls, is sufficient to give the magnitude of any quantity
in question for any combination of values of the three factors
laid down above. |

Any air forcey, for instance, the 1ift or drag of the air-
plane, or a part thereof, has the dimension of a force and can

be measured in pounds. In order to obtain the model rule for an
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air force, we have now to form an expression b%ﬁﬁfﬁpw such that
its dimension is also that of a force. Since @ is the only one
of the three gquantities containing seconds, it caﬁnot occur in
such an expression and, therefore, ¥ = O. There remaims ¥/S

as the only factor containing pounds- Hence ‘B = 1. That leaves

@ =2 and the expression is:

=

2

Force = b .

ct 2
I

The method followed shows that this is the only combination
of this kind existing.

Ié follows that any air force is vroportional to the prod-
uct of a coefficient ¢, which is a pure number and depends upon
the shape of the airplane, and b W/S.

(1) Air force = ¢ b° W/S. —
In the same way the rules for other qQuantities can be found.

The more important are:

(2) Velocity V = c Eéﬁ

3/2
(3) HP/S = ¢ {;éEl———
. P
or, substituting (23)

+ (31) HP/S c W/8V
. _ ¢ b
(4) Time = ¢ bJ/ﬁ7§ =37

(5) Air pressure = ¢ W/8 =c V' P, o

Substituting (2) into (1) gives
(1*) Air force = ¢ b® V2pP.

In the third chapter, the application of these relations
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will be discussed. It is necesBary to finigh first the present
discussion by proceeding to the cases where additional factors
govern the magnitude of the quantities desired. I shall discuss
the influence of the viscosity of the air, of its compressibil-
ity and the influence of the acceleration of gravity on any
airplane maneuver.

The first additional factor to be discussed is the internal
friction or viscosity of the air. The ratio Ef the coefficient
of viscosity WM to the density p called the coefficient of kin-
ematic viscosity, has the dimension %%i%, '£t.° /sec. There can
be formed one combination of the three other factors,

b V=20 Eéﬁ which has the same dimension, and hence, when di-
vided by the coefficient of dynamic viscosity, gives a pure
number B

R = LJ_%_L bV

v

called the Reynolds number. It is usual to use this expression

and any function of ﬁ would serve as well. Hence, if the vis-
cosity has some influence on the things happening, a direct de-
duction between different airplanes or model and airplane can o
only be drawn, if in both cases R has the same value. The
absolute magnitude of R depends upon the choice of the charac-
teristic velocity and the characteristic length, but if both are
chosen in a corresvonding way for several cases, the magnitude

of R has to agree. The smaller the viscosity, the larger be-

comes R.
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The Reynolds rule requires that in the same medium the
velocity be inverse to the scale. The wind tunnel velocity,
for instance, should be five times as large as the velocity.of
flight, if the model is diminished in the scale 1/5. This can-

not be done in ordinary atmospheric wind tunhels, as it would

require too large velocities and would give too large air pres-
sures and air forces. Iﬁ is worthy of remark that at equal
Reynolds number and in the same medium the magnitude of any air
force retains its original value, the force being proportional
to the square of both velocity and length, and these being varied
inversely to each other so that their product remains constant.
The influence of the viscosity is small in many cases, and fail-
ure to follow the Reynolds rule has not prevented the wind tun-—

nels from having been the chief source of information regarding

air forces on airplanes in steady flight. One wind tunnel only,

the variable-density wind tunnel of the National Advisory Com-
mittee for Aeronautics, at Langley Field, is now in existence,
in which tests with the correct Reynolds number can be made.
Another factor which may have influence on the air forces
ig the compressibility of the air. It can be characterized by
the velocity of sound, about.l1100 ft./sec. This suggests at
once the ratio of any characteristic velocity welocity to the
velocity of sound as the absolute mumber governing any influence
of the compressibility on the properties of airplanes. Incom-

pressible air would vnossess an infinite velocity of sound, and
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hence this ratio would be zero. f can be inferred that at a
semall ratio the influence of the compressibility is small. The
ratio of the velocity of flight to the velocity of sound is never
large. The only velocity in aeronautics coming near to the ve-
locity of sound is the $ip velocity of the propeller blades.

Propeller model tests, therefore, should be made with the origi-

nal tip velocity. This leads to a very high rate of revolution _

of a small propeller model, but this difficulty can be overcome.

An equal tip velocity would give an equal pressure distribution

in the same fluid. Hence, if the two propellers are constructed

alike and of the same material the stresses become alike and the
deflections become equivalent too, which is a great additional
advantage of model tests with full size tip speed.

In the variable density wind tunnel with compressed air,
the velocity of sound will not be much changed, as it depends
upon the temperature of the air only. TFull tip velocity would
therefore give the correct influence of the compressibility of
the air, but the stresses and deflections would be too large. .
There could be made two tests with the same propeller model, one

at the right Reynolds number and the right tip speed and the

other with the right pressure disgtribution. If the scale of the

model be 1/n, the pressure in the tunnel would have to be n

atmospheres. Another test with the full tip velocity should be

made at ordinary atmospheric pressure. Then both teste give the

correct influence of the compressibility of the air,'the one
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giving the influence of the viscosity, and the other the elastic-
ity. This would give very instructive results. The combined ef-
fect of both properties of air can be sufficiently studied in
flight.

With propeller model tests, the ratio of the tip velocity
to the velocity of flight, has to be equal in the cases to be _
compared. That correspronds to an equal angle of attack of iwo
airplanes. The rules (1) and (3) then hold with respect to an
air force (thrust) and horsepower required.

Many airplane maneuvers are effected by acceleration of
gravity, g; that is, if forces of gravity and forces of accel-
eration both occur. V3/b is an expression having the dimension
of an.acceleration and hence, its ratio to g can be chosen as
the absolute number, characteristic for the influence of gravity.
Since the magnitude of the gravity g, does not vary, V-/b
has to be kept constant for maneuvers of different airplanes to
be compared with respect to the influence of gravity. This leads
to Froude's rule: the velocity has to be varied as the square

root of the linear dimension.

vV = c/—b_ ) (6)

-

If Froude's rule is followed, the relations (1) %o (5) can
be transformed, as then one of the factors can be eliminated by
the substitution of F?oude's rule (B), resulting, for instance,

in:
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(7) Time = c‘/’lEngth = ¢ velocity,
(8) Force =c v p.
(8) W/S=cbp .-

(10) HP/S = ¢ ¥/%p

ITI. I proceed now with the application of the model rules
discussed, to the problem of two similar airplanes in flight.
The influence of the viscosity and compressibility of the air
can be disregarded in this case. |

Steadvy flight.

With respect to steady flight, the influence of gravity can

also be disregarded, requiring the use of the rules (1) to (5).
The similarity is supposed to extend to an equal angle of attack,
to equal control settings and to the propeller. The tip veloc-
1ty of the propeller is then proportional to the velocity of
flight. '

With respect to a variation of the weight only (density and
size content), equation (8) shows that the velocity decreases
mich more rapidly (equation (3)) as w2, For instance, reduc-
ing the weight to 1/4 means reducing the_velocity to 1/2 only,
and the required horsepower is then but 1/8 of the original.
These relations explain why low-powered and light, but not ex—~
tremely small, airplanes are possible. They refer to any veloc-
ity, maximum or minimum, and rate of climb, and account for the

good start and the comparatively high velocity of these light

airplanes.
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The start with the smallest horsepower as also the ceiling
flight will take place at respectively equal angles of attack.
If it can be assumed that the propeller torque is proportional
to the density of air, and that the rate of revolution of the
propeller at high altitudes does not become excessive when pPropor-
tional to the speed of the airplane, the weights at different
altitudes and equal angle of attack will become proportional to
the density of the air. This follows directly from eguations (1)
to (5) together with the assumption regarding the variation of
the propeller torque.

This relation can be used for determining the highest alti-
tude at which an airplane can take off. The load of the airplane
has to be increased until the pilot is just able to accomplish
the take-off. Then the ratio of the lowest density of take-off
to the density of the test is equal to the ratio of the standard
weight (at which the airplane has to start at a higher altitude)
to the maximum weicht at starting. With a supercharged engine
the torque decreases less and the test may give too unfavorable
a result, except when the revolutions of the propeller are limited
not to exceed the rate of revolution corresponding to this model
rule.

With similar airplanes, of different weight and size, the
velocity is proportional to the square root of the unit load,
(equation (2)). The unit horsepower HP/S is proportional %o

74
(w/8)¥® . Hence the velocity and the horsepower load HP/S do
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not necessarily change if the size of the airplane is changed.

It can be concluded from equation (4) that the time for any
maneuﬁer not influenced by gravity, is proportional directly to
the linear dimension and inversely to the velocity. Certain
types’of oscillations have periods following this rule:

Unsgteady maneuvers. |

Most of the unsteady maneuvers of an alrplane are influ-
enced by gravify. Hence no direct conclusione can be drawn from
one airplane in relation to another similar one, regarding such
maneuvers, unless Froude's rule has been complied with. Hence,
we have now to use equations (8) to (10).

If equations (9) and (1) are followed, conclusions can be
drawn regarding the gt&bility; controllability and maneuverabil-
ity of the airplane. The time of any maneuver of the period of
any oscillation will be proportional to the square root of the
length or to the velocity (equation (7)). The path of the air-
planes will be similar if the same maneuvers are made. The rad-
ius of shortest turn, for instance, will be proportional to a
linear dimension of the airplane.

Froude's rule also includes the question as to how a sea-
plane .can start from the water surface. It thus becomes possi-
ble to determine whether the starting of a giant seaplane can e
accomplished by first building a small similar airplane complying
with equations (9) and (10).

It is impossible to discuss in a short note all items which
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could be investigated through model tests. The general scheme
to be followed is always the same. The factors governing the
result give the conditions of the test to be complied with, and
if so done the result cen be converted proportional to any ex-
pression having the same physical dimension.

Conclusions, by comparison, can also be drawn if the air-

planes are not exactly gimilar. This, however, requires much

more judgment and experience, and the result will only be approx-

imately correct. If the types are distinctly different, for in-
stance, if the control surfaces are comparatively of very differ-
.ent slze, there is ordinarily a fundamental reason for such dif-
ference, which becomes appareﬁt when forming the absolute num-
bers by which the governing factors are connectéd. An additional
factor, not yet mentioned in this note, may be, for instance, the
absolute magnitude of the prevalent wind. Iﬁ all such cases, the
application of the theory of‘the rhysical dimensions and of the
model rules derived therefrom, as pointed out in this note, will

be enlightening and instructive.
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NCTES ON GEOMETRICAL SIMILARITY IN AIRFLANES.
By Ecward P. Warner.

The growing popularity of the light plane, and the répeated
suggestions that it may prove a satisfaciory vehicle for making
preliminary teste from which the performance of much larger air-
planes can be predicted, make it desirable that an investigation
of the relation between large and small airplanes of geometri-
cally similar form be undertaken. Already one prominent French
airplane congtructor has built a machine of but little ébove
the light plane class as a scale model of a giant airplane which
he has projected, and the construction of the large airplane L
will presumably be governed to some extent by the leesons learned
during the trials of the small one. Taere can be no doubt, if
this project of making man—-carrying scale models proves a practi-
cable one, that it will be very widely taken ups

Ingtead of seeking to establish perfectly general relations
between the perférmances of a large airplane and a small one,
1t seems desirable rather to determine the ratios which should
exigt between certain geometrical characteristics in order that
the performances may stand in some particular desired relation.
The elements of performance, including all the flying qualities

of the airplane within that term, are measurable in terms of

length, time and angle, as fundamental quattities, thoge quantities

appearing either singly or in cormbination. Obviously, those ele-
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ments of performance measured in terms of angle, suth’as the in-

clination of the climbing path, should be independent of the size

of the airplane, while those measured in length, such as the min~

imum radius of turn, should be directly proportional to the lin-
ear dimension. The question of the variation of those elements
into which time enters may be put aside for the moment, except
for mention of the obvious fact that the linear velocities must
be proportional to the product of angular velocities and linear
dimension.

The various elements of performance and the characteristics
of the airplane will now be taken up and investigated one by one.
It would, of course, be possible, to rely on the general theory
of dimensions in deriving the desired relations, but conclusions
can be extended over a somewhat broader range if each feature of
pverformance is analyzed separately by methods gsimpler, and in

some cases less rigorous, than the general theory.

Minimum Radius of Turn.

Centripetal force in turning is proportional to the product
of weight, angular velocity, and linear velocity. If airplanes
of different size are to turn at the same angle of vank and with
the same control setting the ratio between centripetal force and
weight must obviougly be constant, and the vproduct of angular
and linear velocities must therefore be independent of linear
dimension. The square of the soeed must then be proportional to

The radius of the turn for a given condition of flight. Since
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the radius is a distance, it should vary as the first power of

a dimension of the airplane, if strict similarity of performance
is maintained, and the speed must therefore be proportional to
the sgquare root of such a dimension of the airplane. It follows‘
also that the angular velocity is inversely proportional to the
square root of a linear dimension. Since the loading of the
wings varies directly as the sQuare of the speed for 4 given
angle of attack, g mugt be propertional to the first power of
a dimension of the airplane, and the total weight miss vary as
the cube of such a dimension. For similarity of performance
there is then the game rule of variation of weight as for sirict-
ly geometrically similar structures.

If this relation of weight and size be followed, not only
the minimum radius of turn, but also the radius for any specified
gset of conditions will be »roportional to the first power of a
length in the airplane. For any fixed angle of attack and angle
of bank the ratio of turning radius to wing span will be inde-
pendent of size.

Controllability in Turning.

The maximum angular velocity of an airplane is sometimes
fixed by the vrower of the control to overcome the damping of the
rotation, rather than by a simple balancing of centripetal force
and horizontal component of 1lift. Dawmping moments are propor-
tional to the product of an angular velocity, a linear velocity,

and the fourth nower of a linear dimension, while control moments
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vary as the cube of a 1éﬁgtﬁ and the square of a linear speed.
In order that controlling power may enter in as a limitation in
the same way for a whole series of geometrically similar air-
vlanes, it is therefore sufficient that ©*°V° = I*Vw or, that
V=wl. Obviously, anv relation between speed and size which
will make radius of turn proportional 4o length of airplane
will also satisfy this equation. The constant ratio between
radius and length will therefore hold good, no matbter what the

factor principally limiting radius may be.

Angular Accelerztion.

The angular acceleration of an airplane for a given control
setting is of course proportional to the ratio of controlling
moment to moment of inertia. The first of these quantities
varies as the cube of a linear dimension and the square of a
speed, the second as the product of the weight and the square

. . Ve
of a length, and the ratio ies therefore proportional tfo Wl

If the relation, already derived, between 1, V, and W be com-
vlied with, this varies inversely as a length. The time re-

quired to reach a specified velocity at oonétant angular accel-
eration would therefore be proportional to the linear dimension
of the airplane, bus, since the maximum angular velocity itself
varies inversely as the square root of a length, the time re-

gquired to reach the maximum is proportional only to in_' Dig—
tance belng the product of time and speed% the distance covered

in reaching maximum angular velocity or aﬂ§ particular fraction
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of the maximum must be difé&%i? proportiohal to 1, and the
angle through which the airplane turns from the beginning of a -
maﬁeuver until a particular proportion of the maximum attainable
angular velocity has been arrived at is qui#e independent of

dimension. This, agaln, is as it should be.

Dynamic Stability.

While on the subject of controlland maneuvering power, at-
tention may . be given also to the equations determining the ampli-
tude and period of the oséillations of an airplane. The work
need not be followed in detail, but, if the variation of each of
the resistance and rotary derivatives be examined separately, it

is found that the coefficients in the familiar stability equation:
AN* +B® + 0N +DAN+E=0

vary with 1 in a descending scale of powers of LME , the first
coefficient varying as 1°. This is obviously equivalent in effect
on any solution of the equation to a variation of A, +the loga-
rithmic determinant itself, in the ratio of the inverse square

root of !. Since the amplitude of an osciliation at any-time
subsequent to its beginning is equal to Cekt,‘ the time required
to damp or increase the amplitude of oscillation by a definite -
ratio must obviously be oroportional to JFTE if A varies as

the inverse square root. V and % then change ~ith 1 in the

same way, while the distance required to damp an oscillation by

a specified amount or to complete one period 'of an oscillation
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is proportional to the product of V and %, or to a linear
dimension of the airplane. Thus, once again, two lengths vary
in the same ratio.

Minimum Speed.

The minimum speed, being proportionsl to the square root of
the wing loading, evidently ‘varies as vfiu. The kinetic energy
vossessed by the airplane on coming in contact with the ground
then varies as 1*, and, assuming the coefficient of friction
the same in all cases, the landing run during whick friction and
air resistance dissivate this kinetic energy varies directly as

a linear dimension of the airplane.

Maximum Speed.

Obviously, in oxder that performences may be comparable,
geometrically similar airplanes should fly a2t maximum speed at
the same angle of attack. The maximum sveeds must therefore
vary in the same ratio as the minima. At a given angle of attack
the power required for flight is proportional to tne product of _ _
the area and the cube of the speed. If the speed varies as sza,
and the propeller efficiency is constant, the power must then be
proportional to 172 » To satisfy maximum speed requirements in
a series of geometrically similar airplanes the engine vover

migt therefore wvary somevhat more rapidly than the weight.

Propeiler Efficiency-

In order that propeller efficiency may be constant, the slip
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function ﬁzﬁ mist be held at a constant value. If V +wvaries

12, K must therefore be inversely proportional to JFTi

as
This condition satisfies the equation of propeller power absorp-
tion also. BSince the power consumed by a propeller at a constant
value of the slip function is promortional to NGDS, it wiil
Lw%

vary as s, 1f N changes with size in the manner jusi stated.

Speed and Angle cf Climb.

The ratio between the powers required for flight at two par-
ticular angles of attack is obviously independent of airplane
size. If the maximum speed corresponds to the same angle of at-
tack in every case and the propeller characteristics are in ac—
cordance with the relation just derived, the percentage of re-
gerve power at the angle of best climb will then be the same for
a vhole series of geometrically similar airplanes. Dividing re-

serve power by weight it appears that climbing speed varies as
/=2
-LI

» or, in the same ratio as speed of flight. The climbing

angle is therefore the same in all cases.

Linear Acceleration.

The linear acceleration of an airplane in taking off is pro-
portional to the ratio of thrust to weight, and that is obviously
congtant, if the prescribed relation between powér and other
characteristics of the airplane be preserved. The distance trav-
eled in acquiring a given velocity is then proportional to the

square of this velocity, and that, in turn, is proportional to 1.
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It has now been seen that all of the flying qualities of a
srmall airplane can be made direstly comparable with those of a
large one, if a very simple relation betwesu size, wesight, power,

and R.P.M. isg maintained. That could have been predicted from

the general theory of dimensions, following the line of Dr. Munk's

work, and, indeed, the relations derived are ldentical with those
given by Froude's law of comparison, and used for ships.* There
are some points, howevei, at which simiiarity of performance
breaks down. As peinted out by Dr. Munk, the conditicu of asro-
dynamic similitude, whioh would make the speed inversely propor-
tional to a linear dimension, cannot be maintained, and the re-
lation existing between flying characteristics in large and small
sizes will also be medified by any aztrucsure in the atmosphere,

a structure which will necessarily have linear dimensions of

its own. Either pericdic gusis or »egions of turbulence will
have effects depending laraely on the size of the airplane which
meets them. It is therefore somewhat unsafe to attémpt to pre-
dict the behavior of a giant airplane in rough air from tests on
a miniature prototype; but there need be no hesitancy about the
avplication of data thus obtained on perficrmance and on maneuver-
ability urder good conditions. The variation of the Reynolds
number ig unlikely two have any serious effect after values even

as large as those for the smallest of light planes have been

reached.

* Speed and Power of Ships, by D. W. Taylor, p.36.
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Structural Relations.

The fact that it has been found necessary to vary the weight
as the cube of a linear dimension suggests the possibility of
building the structures in strict geometrical similarity, in ox-
der that the percentage of weight allotted to each part may re-
main the same in all cases. That would, indeed, be highly desir-
able for complete similarity of performence, as the radii of
gyration are hardly likely to vary in the same manner as the over-
all dimensions, unlesgs a2ll the internal siructure is kept of sim~ °
ilar form as size is changed.

It is, of course, impossible to hold rigidly to similarity
oflstructure. The thickness of fabrie, for example, can hardly
be decreased in proportion to the wing span, and the type of
joint used in built-up members of large airplanes can hardly be
duplicated in small ones. To a certain point, however, similar-
ity can be maintained if it proves to be structurally safe to
hold %o is%. .

Considering first those members which are loaded directly in j
tension or compression, it is obvious that their strength is pro-
portional to Ii This is true even of long struts, since the
ratio of 1 to %k will be independent of the size of the air-
plane. The load carried by such members is proportional to the
airplane weight, and the factor of safety in them therefore varies
inversely as & linear dimension. Over the range of sizes now

used, this is just about the desirable rate of variation, as it



will be found that the load factors now speéified for a high
angle of attack are given approximately for all classes of mil-
itary airplanes by the formula: F = §%Q, where b is the wing
span. -

A similar relation holds true for beams. The bending roment
varies as the weight of the airplane times the svan, or as the
fourth power of a linear dimensgion, while the section modulus
is proportional to 1>. The factor of gafety at a given load
factor again changes inversely with 1. When the beam is sub-
ject to buckling, however, the relation is no longer simple.

The colurn effect is approximately allowed for by Perry's formi-
la: M =M X sz;-, vhere M 1is the bendigg moment due to lat-
eral load, M!' tie bending moment correéted for buckiing, P

the compressive load, and Pg the load which would produce fail-
ure by lateral collapse if there were no 1éteral load at all.

P 1is proportional to f, Pg to 13, "and the corrected bending
monent under unit load therefore changes with linear dimension
in an irresular fashion. If, however, the load factor assumed
to act itself varies as the inverse first power of 1, Pg and

P will change at the same rate and the column effect will re-
main always of the same relative importance.

It is also of interést-at times to know the deflection of
the parts of an airplane. The flexural deflection of the wing
spars, being proportional to %%i, will vary as L5, if the

spars are made in the same way and of the same material. Deflec-
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tions of the wing truss due to the direct éiongatibn'and con~
pression of the members also foilow the same law, since the unit
stresslunder a given load factor has been shown to be propor-
tional to ! and the total change of length of each member must _
therefore be in the ratio of e If, however, the hipghest load
factors actually imposed are in the ratio of %' the structures
will deflect in.a .geometrically similar manner. _ _
Deflection is perhaps most serious in its effect on the
performance of the propeller,lthe angle of twist of the propeller  _
blade being proportional to 1 in geometrically similar airplanes.
A type_of propeller suitable for a small airplane might therefore ;:
be quite unsatisfactory on a large one of tlhe same design, even
though.its_caldulated strength were sufficient, and tests on
geometrically similar airplanes should be carried out with pro-

pellers so designedlas to have a minimum of torsion.

Illugtrative Example.

To show how all of this work can be applied in practice, an
airplane similar in general characteristics to the Barling
Bomber, having a total weight of 42,000 pounds, a span of 130
feet, an area of 4300 square feet, and powered with six 400 HP _
engines may be used as ﬁn example. MNodels of one-third, one-

fourth, and one-fifth full size have been calculated, and their

characteristics are tabulated below:
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Span Area Weight Total horsepower R.P.M.
f+. sq.f%. 1b.
43 467 1560 52 2950
33 263 660 19 3400
26 168 340 8.5 3800

Obviously, the third case is impossible to realize, aé the
pilotts weight would be more than half of the total carried in
flight, and the six engines of 15 horsepawer each would make up
most of the remainder. The second case might be barely possible
with 3 horsepower engines specially built for the purpose. The
welght available for structure woulld be about 300 pounds, the
area being 260 square feet, and the wing loading 3.5 pounds .per
square foe$. The Ffirst case would be easy to realize.

With everything considered, and the advantage and drawbacks
of the light plane as a flying modei talanced against each other,
it still seems quite possible that the construction of such fly-
ing modeié would be well worth while in some cases, particularly
if the de;élopment of large airplanes of eccentric form and ar-
rangement is to continue, and the practice initiated by the
French constructor, already referred to, say on occasion prove

a profitable one’ elsewhere.



